Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mar Drugs ; 19(8)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1375432

ABSTRACT

Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.


Subject(s)
Antiviral Agents/chemistry , Carrageenan/chemistry , Seaweed , Antiviral Agents/pharmacology , Aquatic Organisms , Carrageenan/pharmacology , Humans , Phytotherapy
2.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554850

ABSTRACT

The COVID-19 pandemic continues to spread around the world and remains a major public health threat. Vaccine inefficiency, vaccination breakthroughs and lack of supply, especially in developing countries, as well as the fact that a non-negligible part of the population either refuse vaccination or cannot be vaccinated due to age, pre-existing illness or non-response to existing vaccines intensify this issue. This might also contribute to the emergence of new variants, being more efficiently transmitted, more virulent and more capable of escaping naturally acquired and vaccine-induced immunity. Hence, the need of effective and viable prevention options to reduce viral transmission is of outmost importance. In this study, we investigated the antiviral effect of iota-, lambda- and kappa-carrageenan, sulfated polysaccharides extracted from red seaweed, on SARS-CoV-2 Wuhan type and the spreading variants of concern (VOCs) Alpha, Beta, Gamma and Delta. Carrageenans as part of broadly used nasal and mouth sprays as well as lozenges have the potential of first line defense to inhibit the infection and transmission of SARS-CoV-2. Here, we demonstrate by using a SARS-CoV-2 spike pseudotyped lentivirus particles (SSPL) system and patient-isolated SARS-CoV-2 VOCs to infect transgenic A549ACE2/TMPRSS2 and Calu-3 human lung cells that all three carrageenan types exert antiviral activity. Iota-carrageenan exhibits antiviral activity with comparable IC50 values against the SARS-CoV-2 Wuhan type and the VOCs. Altogether, these results indicate that iota-carrageenan might be effective for prophylaxis and treatment of SARS-CoV-2 infections independent of the present and potentially future variants.


Subject(s)
COVID-19 Drug Treatment , COVID-19/virology , Carrageenan/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/pharmacology , Chlorocebus aethiops , HEK293 Cells , Humans , Pandemics , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vero Cells
3.
PLoS One ; 16(11): e0259943, 2021.
Article in English | MEDLINE | ID: covidwho-1526690

ABSTRACT

Last year observed a global pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2) infection affecting millions of individuals worldwide. There is an urgent unmet need to provide an easily producible and affordable medicine to prevent transmission and provide early treatment for this disease. Since the nasal cavity and the rhinopharynx are the sites of initial replication of SARS-CoV-2, a nasal spray may be an effective option to target SARS-CoV-2 infection. In this study, we tested the antiviral action of three candidate nasal spray formulations against SARS-CoV-2 in vitro. We determined that iota-carrageenan in concentrations as low as 6 µg/mL inhibits SARS-CoV-2 in vitro. The concentrations of iota-carrageenan with activity against SARS-CoV-2 in vitro may be easily achieved through the application of nasal sprays as commonly used in several countries. Recently a double-blind, placebo-controlled study showed that iota-carrageenan in isotonic sodium chloride reduces ca. five times the risk of infection by SARS-CoV-2 in health care personnel. Further, xylitol at a concentration of 50 mg/mL (ca. 329 mM) was found to exert some antiviral action, though this preliminary finding needs further confirmation.


Subject(s)
Carrageenan/pharmacology , SARS-CoV-2/drug effects , Xylitol/pharmacology , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Nasal Sprays , Vero Cells
4.
Mar Drugs ; 19(8)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1325731

ABSTRACT

Over 182 million confirmed cases of COVID-19 and more than 4 million deaths have been reported to date around the world. It is essential to identify broad-spectrum antiviral agents that may prevent or treat infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but also by other coronaviruses that may jump the species barrier in the future. We evaluated the antiviral selectivity of griffithsin and sulfated and non-sulfated polysaccharides against SARS-CoV-1 and SARS-CoV-2 using a cytotoxicity assay and a cell-based pseudoviral model. The half-maximal cytotoxic concentration (CC50) and half-maximal effective concentration (EC50) were determined for each compound, using a dose-response-inhibition analysis on GraphPad Prism v9.0.2 software (San Diego, CA, USA). The therapeutic index (TI = CC50/EC50) was calculated for each compound. The potential synergistic, additive, or antagonistic effect of different compound combinations was determined by CalcuSyn v1 software (Biosoft, Cambridge, UK), which estimated the combination index (CI) values. Iota and lambda carrageenan showed the most potent antiviral activity (EC50 between 3.2 and 7.5 µg/mL). Carrageenan and griffithsin combinations exhibited synergistic activity (EC50 between 0.2 and 3.8 µg/mL; combination index <1), including against recent SARS-CoV-2 mutations. The griffithsin and carrageenan combination is a promising candidate to prevent or treat infections by SARS-CoV-1 and SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Carrageenan/pharmacology , Plant Lectins/pharmacology , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , COVID-19/virology , Drug Synergism , HeLa Cells , Humans , Models, Biological , Polysaccharides/pharmacology , COVID-19 Drug Treatment
5.
Pharmacol Res Perspect ; 9(4): e00810, 2021 08.
Article in English | MEDLINE | ID: covidwho-1269137

ABSTRACT

In this individual patient data meta-analysis we examined datasets of two randomized placebo-controlled trials which investigated the effect of nasal carrageenan separately on children and adults. In both trials, iota-carrageenan was administered nasally three times per day for 7 days for patients with the common cold and follow-up lasted for 21 days. We used Cox regression to estimate the effect of carrageenan on recovery rate. We also used quantile regression to calculate the effect of carrageenan on colds of differing lengths. Nasal carrageenan increased the recovery rate from all colds by 54% (95% CI 15%-105%; p = .003). The increase in recovery rate was 139% for coronavirus infections, 119% for influenza A infections, and 70% for rhinovirus infections. The mean duration of all colds in the placebo groups of the first four quintiles were 4.0, 6.8, 8.8, and 13.7 days, respectively. The fifth quintile contained patients with censored data. The 13.7-day colds were shortened by 3.8 days (28% reduction), and 8.8-day colds by 1.3 days (15% reduction). Carrageenan had no meaningful effect on shorter colds. In the placebo group, 21 patients had colds lasting over 20 days, compared with six patients in the carrageenan group, which corresponds to a 71% (p = .003) reduction in the risk of longer colds. Given that carrageenan has an effect on diverse virus groups, and effects at the clinical level on two old coronaviruses, it seems plausible that carrageenan may have an effect on COVID-19. Further research on nasal iota-carrageenan is warranted.


Subject(s)
Antiviral Agents/administration & dosage , Carrageenan/administration & dosage , Common Cold/virology , Coronavirus Infections/drug therapy , Influenza, Human/drug therapy , Picornaviridae Infections/drug therapy , Administration, Intranasal , Adult , Antiviral Agents/therapeutic use , Carrageenan/pharmacology , Child, Preschool , Common Cold/drug therapy , Female , Humans , Male , Nasal Sprays , Randomized Controlled Trials as Topic , Regression Analysis , Survival Analysis , Time Factors , Treatment Outcome
6.
BMJ ; 373: n949, 2021 04 26.
Article in English | MEDLINE | ID: covidwho-1203960

ABSTRACT

OBJECTIVE: To determine and compare the effects of drug prophylaxis on SARS-CoV-2 infection and covid-19. DESIGN: Living systematic review and network meta-analysis. DATA SOURCES: World Health Organization covid-19 database, a comprehensive multilingual source of global covid-19 literature to 25 March 2021, and six additional Chinese databases to 20 February 2021. STUDY SELECTION: Randomised trials of people at risk of covid-19 who were assigned to receive prophylaxis or no prophylaxis (standard care or placebo). Pairs of reviewers independently screened potentially eligible articles. METHODS: Random effects bayesian network meta-analysis was performed after duplicate data abstraction. Included studies were assessed for risk of bias using a modification of the Cochrane risk of bias 2.0 tool, and certainty of evidence was assessed using the grading of recommendations assessment, development, and evaluation (GRADE) approach. RESULTS: The first iteration of this living network meta-analysis includes nine randomised trials-six of hydroxychloroquine (n=6059 participants), one of ivermectin combined with iota-carrageenan (n=234), and two of ivermectin alone (n=540), all compared with standard care or placebo. Two trials (one of ramipril and one of bromhexine hydrochloride) did not meet the sample size requirements for network meta-analysis. Hydroxychloroquine has trivial to no effect on admission to hospital (risk difference 1 fewer per 1000 participants, 95% credible interval 3 fewer to 4 more; high certainty evidence) or mortality (1 fewer per 1000, 2 fewer to 3 more; high certainty). Hydroxychloroquine probably does not reduce the risk of laboratory confirmed SARS-CoV-2 infection (2 more per 1000, 18 fewer to 28 more; moderate certainty), probably increases adverse effects leading to drug discontinuation (19 more per 1000, 1 fewer to 70 more; moderate certainty), and may have trivial to no effect on suspected, probable, or laboratory confirmed SARS-CoV-2 infection (15 fewer per 1000, 64 fewer to 41 more; low certainty). Owing to serious risk of bias and very serious imprecision, and thus very low certainty of evidence, the effects of ivermectin combined with iota-carrageenan on laboratory confirmed covid-19 (52 fewer per 1000, 58 fewer to 37 fewer), ivermectin alone on laboratory confirmed infection (50 fewer per 1000, 59 fewer to 16 fewer) and suspected, probable, or laboratory confirmed infection (159 fewer per 1000, 165 fewer to 144 fewer) remain very uncertain. CONCLUSIONS: Hydroxychloroquine prophylaxis has trivial to no effect on hospital admission and mortality, probably increases adverse effects, and probably does not reduce the risk of SARS-CoV-2 infection. Because of serious risk of bias and very serious imprecision, it is highly uncertain whether ivermectin combined with iota-carrageenan and ivermectin alone reduce the risk of SARS-CoV-2 infection. SYSTEMATIC REVIEW REGISTRATION: This review was not registered. The protocol established a priori is included as a supplement. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.


Subject(s)
COVID-19 , Carrageenan/pharmacology , Global Health/statistics & numerical data , Hydroxychloroquine/pharmacology , Ivermectin/pharmacology , Anti-Infective Agents/pharmacology , COVID-19/prevention & control , Chemoprevention/methods , Chemoprevention/statistics & numerical data , Humans , SARS-CoV-2 , Treatment Outcome , Uncertainty
7.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L750-L756, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1076012

ABSTRACT

Pharmaceutical interventions are urgently needed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission. As SARS-CoV-2 infects and spreads via the nasopharyngeal airways, we analyzed the antiviral effect of selected nasal and oral sprays on virus infection in vitro. Two nose sprays showed virucidal activity but were cytotoxic precluding further analysis in cell culture. One nasal and one mouth spray suppressed SARS-CoV-2 infection of TMPRSS2-expressing Vero E6 cells and primary differentiated human airway epithelial cultures. The antiviral activity in both sprays could be attributed to polyanionic ι- and κ-carrageenans. Thus, application of carrageenan-containing nasal and mouth sprays may reduce the risk of acquiring SARS-CoV-2 infection and may limit viral spread, warranting further clinical evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , Carrageenan/pharmacology , SARS-CoV-2/drug effects , Adult , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/drug effects , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Nasal Sprays , Oral Sprays , Serine Endopeptidases/metabolism , Vero Cells
8.
Sci Rep ; 11(1): 821, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1065936

ABSTRACT

Influenza virus and coronavirus, belonging to enveloped RNA viruses, are major causes of human respiratory diseases. The aim of this study was to investigate the broad spectrum antiviral activity of a naturally existing sulfated polysaccharide, lambda-carrageenan (λ-CGN), purified from marine red algae. Cell culture-based assays revealed that the macromolecule efficiently inhibited both influenza A and B viruses with EC50 values ranging from 0.3 to 1.4 µg/ml, as well as currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an EC50 value of 0.9 ± 1.1 µg/ml. No toxicity to the host cells was observed at concentrations up to 300 µg/ml. Plaque titration and western blot analysis verified that λ-CGN reduced expression of viral proteins in cell lysates and suppressed progeny virus production in culture supernatants in a dose-dependent manner. This polyanionic compound exerts antiviral activity by targeting viral attachment to cell surface receptors and preventing virus entry. Moreover, its intranasal administration to mice during influenza A viral challenge not only alleviated infection-mediated reductions in body weight but also protected 60% of mice from virus-induced mortality. Thus, λ-CGN could be a promising antiviral agent for preventing infection with several respiratory viruses.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Carrageenan/pharmacology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae/drug effects , SARS-CoV-2/drug effects , Animals , Antiviral Agents/therapeutic use , Carrageenan/therapeutic use , Dogs , Female , HEK293 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae/physiology , SARS-CoV-2/physiology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL